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Abstract. Let A and B be two Grothendieck categories, R : A → B,
L : B → A a pair of adjoint functors, S ∈ B a generator, and U = L(S).
U defines a hereditary torsion class in A, which is carried by L, under
suitable hypotheses, into a hereditary torsion class in B. We investigate
necessary and sufficient conditions which assure that the functors R
and L induce equivalences between the quotient categories of A and
B modulo these torsion classes. Applications to generalized module
categories, rings with local units and group graded rings are also given
here.

Introduction

The motivation of the study of equivalences of categories comes from the
fact that many “coincidences” arising in several areas of mathematics may be
explained, at a general level, as consequences of a suitable equivalence. For
the case of the Grothendieck categories, the original situation is the classical
Morita theory, where the equivalences between two module categories over
the rings R and S are described as the functors Hom(M,−) and − ⊗S M ,
with M a progenerator of Mod-R and S ∼= EndR(M). For this case, it may
be seen that the study of the equivalences of categories is strongly linked
to the one of the relationships between an R-module and its endomorphism
ring.

Later on, various generalizations of the Morita theory were studied by
many authors (see [5], [7], [8], [21]). If A is a locally finitely generated
Grothendieck category, M ∈ A and S = EndA(M), then, without any
assumption on M , it was proved in [9] that HomA(M,−) induces an equiv-
alence between certain quotient categories of A and Mod-S respectively.
More recently, in [4] it is proposed an approach of equivalences between two
complete and cocomplete abelian categories A and B, which is based on an
arbitrary pair of adjoint functors R : A → B and L : B → A. The results in
[4] and [9] are among our main starting point here. The aim of the present
paper is to investigate conditions for the application of the results given in [9]

1991 Mathematics Subject Classification. 18E15, 18E35, 18E40, 16D90, 18A40.
Key words and phrases. adjoint pair, equivalence, localization, Grothendieck cate-

gories, small preadditive category.

1



2 CIPRIAN MODOI

in the case of an arbitrary adjoint pair between Grothendieck categories, as
in [4]. This aim was stimulated by the observation that, in several situations,
it is preferable to replace the category Mod-S from [9], with one of modules
over a ring without identity. Consequently, the usual Hom-functor may be
replaced with one preserving some additional structures, for instance the
grading as in [16], or local units as in [2]. In the same way, we also cover the
case of the category of all additive contravariant functors (mod-R)op → Ab,
R being a ring, which plays a central role in the representation theory of
finite dimensional algebras (see [3] or [14]).

The paper is organized as follows. In Section 1 is presented the general
theory, the main results being Proposition 1.13 and Theorem 1.18, which
give necessary and sufficient conditions for certain subcategories of A and
B to be equivalent, via some functors induced by R and L. In Section 2 we
are concerned with the category of modules over rings with several objects.
We deduce equivalences for the case of the graded modules, the generalized
R-modules, where R is an algebra over a field k, and the unital modules
over a ring with local units.

Let us briefly present our general assumptions and notations. Throughout
this paper rings are associative, and modules are right, unless otherwise
stated. If A is a category, we shall write A ∈ A to indicate that A is an
object of A. If A ∈ A, then LA(A) denotes the lattice of subobjects of A.
We shall denote by fgA and fpA the full subcategories of A consisting of
finitely generated, respectively finitely presented objects. The composition
of two morphisms f : A′ → A and f ′ : A → A′′ will be simply written as f ′f .
The same holds for functors. All functors between preadditive categories are
additive. When we consider contravariant functors, this will be explicitly
stated, otherwise the functors are covariant. If f is a functor, we shall denote
by Ker f the class of all objects which are carried into 0 by f .

We refer to [17] or [19] for general facts about the theory of categories,
and to [20] for the module theory and the torsion theory.

1. Localization and equivalences

1.1. General setting. Let A and B be Grothendieck categories, and

A R // B
L

oo a pair of adjoint functors. Let S ∈ B be a generator, and put

U = L(S) ∈ A. Denote by

σ : 1B → RL and ρ : LR → 1A
the unit, respectively the counit of the adjunction. Thus, for all A ∈ A and
all B ∈ B, we note the well-known relations

R(ρA)σR(A) = 1R(A) and ρL(B)L(σB) = 1L(B).

We know that R is limit preserving and L is colimit preserving, in par-
ticular, R is left exact and L is right exact. We define the full subcate-
gories Stat(R), L(B), Pres[U ], Gen[U ] and σ[U ] of A, consisting of objects
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A ∈ A, for which ρA is an isomorphism, there is an object B ∈ B such
that A ∼= L(B), there exists an exact sequence U (Λ′) → U (Λ) → A → 0,
there is an exact sequence U (Λ) → A → 0, respectively there is an object
A′ ∈ Gen[U ] such that A is a subobject of A′. We also consider the full
subcategories Adst(R) and R(A) of B, which contain those objects B ∈ B,
such that σB is an isomorphism, respectively there is an object A ∈ A with
B ∼= R(A).

Observe that we have the inclusions

Stat(R) ⊆ L(B) ⊆ Pres[U ] ⊆ Gen[U ] ⊆ σ[U ] ⊆ A,

Adst(R) ⊆ R(A) ⊆ B.

In addition, note that an object A of A belongs to Pres[U ] if and only if
there is a short exact sequence 0 → K → U (Λ) → A → 0 with K ∈ Gen[U ],
and that the functors R and L induce an equivalence

Stat(R)
R // Adst(R).
L

oo

1.2. The torsion theory on A associated with U . It is easy to observe
that Gen[U ] is a pretorsion class on A, that is, it is closed under quotients
and direct sums. Its corresponding idempotent preradical (see [20, Chapter
VI, Proposition 1.4]) is given by TrU : A → A, TrU (A) =

∑{A′ ∈ LA(A) |
A′ ∈ Gen[U ]}. Clearly, TrU (A) is the greatest subobject of A belonging to
Gen[U ], and it is called the trace of U in A. By standard arguments, it may
be verified that TrU (A) =

∑{Im f | f ∈ HomA(U,A)}.
Define

FA = {F ∈ A | HomA(A/TrU (A), F ) = 0 for all A ∈ A},
TA = {T ∈ A | HomA(T, F ) = 0 for all F ∈ FA}.

Therefore (TA,FA) is the torsion theory generated by the class {A/TrU (A) |
A ∈ A}. As this class is closed under subobjects, it follows that the torsion
theory is hereditary (as in [20, VI, Proposition 3.3]). To this torsion theory
there corresponds a left exact (necessarily idempotent) radical [20, Chapter
VI, Proposition 3.1], denoted here by tA : A → A.

In addition, an object A ∈ A is called U -distinguished, if for any nonzero
morphism f ∈ HomA(A′, A), there is a morphism h ∈ HomA(U,A′) such
that fh 6= 0. Then we have by [9, Proposition 1.2]

FA = {F ∈ A | F is U -distinguished}.
1.3. The relationship between TA, U and KerR. In the sequel, an
important role is played by the equality TA = KerR. Now, we proceed to
find conditions for the validity of this equality. As a first step, observe that

KerR = Ker HomA(U,−) ⊆ TA.

Indeed, for all A ∈ A we have the natural isomorphism HomB(S,R(A)) ∼=
HomA(U,A), so HomA(U,A) = 0 if and only if R(A) = 0, because S is a
generator for B. Moreover, let T ∈ KerHomA(U,−) and F ∈ FA. Since F is
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U -distinguished, we obtain HomA(T, F ) = 0, and this implies that T ∈ TA.
Therefore KerR = TA if and only if KerHomA(U,−) = TA, or using the
terminology of [9], U is a CQF-3 object of A.

Further we have

KerR = {T ∈ A | HomA(A, T ) = 0 for all A ∈ Gen[U ]}.

The inclusion of the class {T ∈ A | HomA(A, T ) = 0, for all A ∈ Gen[U ]}
in Ker HomA(U,−) is obvious. Now, let T ∈ A such that HomA(U, T ) = 0,
and let A ∈ Gen[U ]. Then there is an epimorphism h : U (Λ) → A, and
consider the canonical injections qλ : U → U (Λ), λ ∈ Λ. If f ∈ HomA(A, T ),
then fhqλ = 0 for all λ ∈ Λ, so fh = 0, and f = 0, h being an epimorphism.
Thus HomA(A, T ) = 0, and the converse inclusion is proved. Note that the
above equality shows that KerR is the pretorsion free class corresponding
to Gen[U ].

Recall that a class of objects of a Grothendieck category is called a TTF-
class if it is both a torsion and a torsion free class. A hereditary torsion
class is a TTF-class if and only if it is closed under products. We discus
here, for later references, a particular case, namely when U is a projective
object of A. Then, obviously, KerR = Ker HomA(U,−) is a TTF-class.
Moreover Gen[U ] is closed under extensions, hence it is the corresponding
torsion class, regarding KerR as torsion free class. Thus, by [20, Chapter
VI, Proposition 2.3], TrU is a radical, so TrU (A/TrU (A)) = 0 for all A ∈ A.
Using this, we may prove the equality

FA = {F ∈ A | HomA(T, F ) = 0 for all T ∈ KerHomA(U,−)}.

Indeed, since Ker HomA(U,−) ⊆ TA, the inclusion of FA in the class de-
fined in the right hand side of the above equality always holds. Conversely,
the generating class {A/TrU (A) | A ∈ A} of the torsion theory (TA,FA)
is contained in KerHomA(U,−). Therefore TA and KerR are equal, as
torsion classes for two torsion theories with the same torsion free class, or
equivalently, U is a CQF-3 object of A.

Replacing the category A with the Grothendieck category σ[U ], we can
use weaker conditions, namely U to be Σ-quasiprojective instead of projec-
tive, or R to be exact only on short exact sequences with terms in σ[U ]. Of
course, in this case (TA,FA) is a torsion theory in σ[U ]. Throughout this
paper we shall have in mind the possibility of replacing A with σ[U ].

1.4. Lemma. With the above notations, the following statements are true.
a) R(Im ρA) ∼= R(A) for all A ∈ A, and Im ρA is the smallest subobject

of A which satisfies this property;
b) Im ρA ∈ Gen[U ] for all A ∈ A, and

{A ∈ A | ρA is an epimorphism} ⊆ Gen[U ].



EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 5

Proof. a) Let A be an arbitrary object of A. By the factorization of ρA

trough its image we obtain the commutative diagram with exact row

LR(A)

ρA

²²zzttttttttt

0 // Im ρA
// A.

This induces a factorization

RLR(A)
R(ρA)−→ R(A) = RLR(A) → R(Im ρA) → R(A),

where R(Im ρA) → R(A) is a monomorphism, since R is left exact. But
R(ρA) is an epimorphism, so R(Im ρA) → R(A) is an epimorphism too,
hence an isomorphism.

Let now A′ be a subobject of A. If Im ρA ≤ A′, the left exactness of R
implies R(Im ρA) ≤ R(A′) ≤ R(A), hence R(A′) ∼= R(A). Conversely, if
R(A′) ∼= R(A), then the commutative diagram with exact bottom row

LR(A′)

ρA′
²²

LR(A)

ρA

²²
0 // A′ // A

shows that ρA factors through A′, or equivalently, Im ρA ≤ A′.
b) This is immediate, since LR(A) ∈ Gen[U ] for all A ∈ A, and Gen[U ]

is closed under quotients. ¤

1.5. Lemma. The following statements are equivalent for the adjoint pair
(R,L).

(i) Im ρA = TrU (A) for all A ∈ A;
(ii) {A ∈ A | ρA is an epimorphism} = Gen[U ]
Moreover, if any of these conditions holds, then Coker ρA ∈ TA for all

A ∈ A.

Proof. (i)⇒(ii). As we have already seen in Lemma 1.4, we must prove only
the inclusion of Gen[U ] in the class {A ∈ A | ρA is an epimorphism}. But
assuming (i), this is immediate, since A ∈ Gen[U ] if and only if A = TrU (A).
Moreover, it is clear that Coker ρA = A/TrU (A) ∈ TA.

(ii)⇒(i). Let A′ = TrU (A). Then ρA′ is an epimorphism, and Im ρA ≤ A′.
Thus the commutative diagram

LR(A′)

ρA′
²²

// LR(A)

ρA

²²yysssssssssss

0 // A′ // A

shows that LR(A) → A′ is an epimorphism, so A′ = Im ρA. ¤
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1.6. Proposition. If Pres[U ] = Stat(R), then the following statements
hold.

a) σR(A),R(ρA),L(σB), ρL(B) are isomorphisms for all A ∈ A and all
B ∈ B;

b) Pres[U ] is a reflective subcategory of A with the reflector LR;
c) R(A) is a coreflective subcategory of A with the coreflector RL;
d) Ker ρA ∈ TA for all A ∈ A.

Proof. According to [4, Theorem 1.6], the hypothesis Pres[U ] = Stat(R) is
equivalent to R(A) = Adst(R).

a) Let A ∈ A. Then R(A) ∈ R(A), so σR(A) is an isomorphism, and
R(ρA) = σ−1

R(A). Since L(B) ∈ Pres[U ], what remains follows in a dual
manner.

b) Recall that a full subcategory of a given category is called (co)reflective
if the inclusion functor has a (left) right adjoint [17, Chapter V, Section 5].
(Note also that this terminology is not universally accepted. Some times a
full subcategory is called reflective if the inclusion functor has a left adjoint,
see for instance [20, p. 213]). Let now A ∈ Pres[U ] and A′ ∈ A. Using the
adjunction between R and L and a), we deduce the natural isomorphisms

HomA(A,LR(A′)) ∼= HomA(LR(A),LR(A′)) ∼=
HomB(R(A),RLR(A′)) ∼= HomB(R(A),R(A′)),

and
HomA(A,A′) ∼= HomA(LR(A), A′) ∼= HomB(R(A),R(A′)).

Consequently, LR is the right adjoint of the inclusion functor Pres[U ] → A.
c) This is the dual of b).
d) Applying the left exact functor R to the exact sequence

0 → Ker ρA → LR(A)
ρA−→ A,

using a) and the inclusion KerR ⊆ TA, the assertion follows. ¤
1.7. Limits and colimits in Pres[U ]. Assume the hypothesis of the
previous proposition. Thus LR : A → Pres[U ] is limit preserving, and
the inclusion functor Pres[U ] → A is colimit preserving. In addition we
know, by [17, Chapter V, duals of Proposition 5.1 and Proposition 5.2],
that Pres[U ] is a complete and cocomplete category. More precisely, let

{Aλ

ϕλ,λ′−→ Aλ′ | λ, λ′ ∈ Λ} be a diagram in Pres[U ]. If {A ϕλ−→ Aλ | λ ∈ Λ} is
its limit in A, then {LR(A)

ρA−→ A
ϕλ−→ Aλ | λ ∈ Λ} is its limit in Pres[U ];

if {Aλ
ϕλ−→ A | λ ∈ Λ} is its colimit in A, then A ∼= LR(A) ∈ Pres[U ], and

it is its colimit in Pres[U ] as well.
In particular, if Pres[U ] is normal and conormal (which, by [17, Chapter

I, Theorem 20.1] is equivalent to be abelian), then a morphism in Pres[U ]
is a monomorphism (epimorphism) in Pres[U ] if and only if LR carries its
kernel into the zero object of A (respectively, it is an epimorphism in A).
This situation happens, for instance, if LR : A → Pres[U ] is right exact



EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 7

[17, V, dual of Proposition 5.3], this being actually equivalent to the right
exactness of the functor LR : A → A, since the colimits in Pres[U ] are
computed exactly as in A.

1.8. Filters corresponding to hereditary torsion classes. Let B be a
Grothendieck category with a generator S, and let T be a hereditary torsion
class on B. Define G = {I ∈ LB(S) | S/I ∈ T }. Using standard arguments,
as in [20, Chapter VI, Proposition 4.2], we may see that G is a filter on
the lattice LB(S) (that means that if I1 ∈ G, I2 ∈ LB(S) and I1 ⊆ I2,
then I2 ∈ G, and if I1, I2 ∈ G, then I1 ∩ I2 ∈ G). Moreover, every torsion
object B ∈ T may be regarded as a direct limit of a family of subobjects
{Bλ | λ ∈ Λ}, such that Bλ

∼= S/Iλ for some Iλ ∈ G, for all λ ∈ Λ.
Indeed, if B is of this form, then, clearly, B ∈ T . Conversely, let

p : S(Λ) → B be an epimorphism, with B ∈ T . Consider the canonical
injections qλ : S → S(Λ), and let Bλ = Im pqλ ≤ B. For all λ ∈ Λ denote
by pλ the factorization of pqλ through its image, and let Iλ = Ker pλ. We
obtain a commutative diagram with exact rows

0 // Iλ
// S

pλ //

qλ

²²

Bλ
//

²²

0

S(Λ)
p // B // 0.

Obviously, lim−→ Bλ ≤ B. Since S/Iλ
∼= Bλ ∈ T , it follows Iλ ∈ G. If

π : B → B/ lim−→ Bλ denotes the canonical projection, then πpqλ = 0 for all
λ ∈ Λ, hence πp = 0, and π = 0, because p is an epimorphism. Therefore
B = lim−→ Bλ.

Note that, in the above situation, T is generated by {S/I | I ∈ G}, that is,
the corresponding torsion free class consists exactly of those objects B ∈ B
for which HomB(S/I,B) = 0 for all I ∈ G (see also [20, Chapter VI, Section
2]).

1.9. The torsion theory in B associated with TA. Assume that the
object KerL(g) is TA-torsion for every monomorphism g in B. Then

TB = {B ∈ B | L(B) ∈ TA}
is a hereditary torsion class of objects of B.

Without any additional assumptions, it is straightforward to check that
TB is closed under quotients, extensions and direct sums. If g : B′ → B is a
monomorphism in B with B ∈ TB, then KerL(g), ImL(g) ∈ TA. Thus the
short exact sequence 0 → KerL(g) → L(B′) → ImL(g) → 0 shows that
L(B′) ∈ TA, hence TB is hereditary.

We denote by FB the corresponding torsion free class, and by tB the
associated left exact (again necessarily idempotent) radical. In order to
describe better this torsion theory, denote by IU the image of the induced
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morphism L(I) → U , for any subobject I of S. Clearly, IU ≤ U , and put

G = {I ∈ LB(S) | U/IU ∈ TA}.
Thus we have:

1.10. Lemma. Suppose that KerL(g) ∈ TA for any monomorphism g in
B. Then, the torsion theory (TB,FB) is generated by the set {S/I | I ∈ G}.
Proof. Using paragraph 1.8 it is enough to observe that

G = {I ∈ LB(S) | S/I ∈ TB}.
Indeed, if I ≤ S, then the short exact sequence 0 → I → S → S/I → 0
induces a commutative diagram with exact rows

L(I) //

²²

L(S) // L(S/I) // 0

0 // UI // U // U/UI // 0,

where L(I) → IU is an epimorphism. Consequently, we obtain an epi-
morphism L(S/I) → U/IU , and the Ker-Coker lemma implies that it is
actually an isomorphism. Hence U/IU ∈ TA is equivalent to L(S/I) ∈ TA,
or to S/I ∈ TB. ¤

1.11. Remark. The condition for KerL(g) to be torsion in A for every
monomorphism g in B is the second important assumption of this section, the
first being TA = KerR. While for this first condition, studied in paragraph
1.3, we have found some fairly general hypotheses such that it holds, now it
seems more difficult to give such hypotheses, unless we consider particular
situations.

1.12. Localization for the categories A and B. By localization of
an abelian category we understand an exact functor defined on it, which
has a fully-faithful right adjoint. It is well known that, in the case of the
Grothendieck categories, the kernel of this exact functor is a hereditary tor-
sion class, and conversely, if a hereditary torsion class of a Grothendieck
category is given, then it defines such a localization between the initial cat-
egory and the so called quotient category modulo this torsion class. More-
over the quotient category is Grotendieck too. This is the reason why the
more general concept of localizing subcategory coincides, in the case of the
Grothendieck categories, with the one of hereditary torsion class.

Assume that KerL(g) is TA-torsion for every monomorphism g in B. Then
TB is a hereditary torsion class, and we consider the quotient categories
C = A/TA, D = B/TB with the canonical functors

A a // C
i

oo and B b // D
j

oo ,
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where a,b are exact, i, j are fully-faithful right adjoints for a, respectively
b, and TA = Kera, TB = Kerb. We shall denote by

ν : 1A → ia and µ : ai → 1C ,

η : 1B → jb and δ : bj → 1D,

the units and the counits of these adjunctions. Then, µ and δ are natural
isomorphisms, and νA, ηB have torsion kernel and cokernel relative to TA,
respectively TB, for all A ∈ A and all B ∈ B.

Obviously, the condition KerL(g) ∈ TA for every monomorphism g in B
is equivalent to the (left) exactness of the functor aL : B → C. Moreover, it
implies TB = KeraL.

As usual, we identify the categories C and D with the full subcategories
of A and B consisting of TA, respectively TB-closed objects. Recall that an
object A of A is called TA-closed, if it is torsion free, and every morphism
f ∈ HomA(A,A′) with torsion kernel and cokernel is a section (that means,
there is a morphism f ′ ∈ HomA(A′, A) such that f ′f = 1A) [19, Chapter 4,
Lemma 7.9]. With this identification, the functors i and j become inclusions
of C in A and D in B respectively. Clearly, D = B if and only if G = {S}.
1.13. Proposition. If aL is exact, then the following statements are equiv-
alent.

(i) The functor Ri : C → B is fully-faithful;
(ii) ρC has torsion kernel and cokernel for all objects C of C;
(iii) C Ri // D

aL
oo are equivalences inverse to each other.

Proof. (i)⇔(ii). The functor aL : B → C is the left adjoint of Ri, and the
counit of the adjunction is given by

aLRi(C)
a(ρi(C))−→ ai(C)

µC−→ C,

for all C ∈ C. Thus, according to [19, Chapter 1, Theorem 13.10], Ri is
fully-faithful if and only if this counit is an isomorphism. Since µC is always
an isomorphism, this is equivalent to a(ρC) = a(ρi(C)) to be invertible, or
to Ker ρC , Coker ρC ∈ TA for all C ∈ C.

(i)⇒(iii). Since the functor aL is exact, and Ri is fully-faithful, [19,
Chapter 4, Theorem 7.11] states that Ri induces an equivalence between C
and B/KeraL. But it is clear that KeraL = TB, and (iii) follows.

(iii)⇒(i) is obvious. ¤

1.14. Corollary. If aL is exact, and, in addition Pres[U ] = Stat(R), then
the categories C and D are equivalent.

Proof. Let C ∈ C. Using Proposition 1.6 d), we have Ker ρC ∈ TA. On
the other hand, [4, Lemma 1.4] implies the equality Gen[U ] = {A ∈ A |
ρA is an epimorphism}, so Coker ρC ∈ TA by Lemma 1.5, and the condition
(ii) of the previous proposition is satisfied. ¤
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1.15. Remark. If R = HomA(U,−), S = EndR(U) and B = Mod-S, then
a(U) is a generator of C (see [9, Lemma 1.3]). Thus the functor

HomA(a(U),−) : C → Mod-EndC(a(U))

is fully-faithful by the Popescu-Gabriel theorem [20, X, Theorem 4.1 ]. Since
HomA(U,C) ∼= HomA(a(U), C) for all C ∈ C, and EndC(a(U)) is the ring
of quotients of S with respect to a certain topology by [9, proof of Theorem
1.6], it follows that the functor HomA(U,−) : C → Mod-S is fully-faithful
too. Therefore Proposition 1.13 gives the equivalence stated in [9, Theorem
1.6], while Lemma 1.10 gives the Gabriel topology on S. Of course, the
argument used to show that EndC(a(U)) is the ring of quotients of S is an
important part of the proof of [9, Theorem 1.6].

1.16. Equivalences when TA is a TTF-class. Assume that TA is a TTF-
class and denote by H the corresponding torsion class and by h : A → A the
associated idempotent radical [20, Chapter VI, Proposition 2.3]. Consider
the full subcategory of A consisting of the objects belonging simultaneously
to FA and H, that is

GF[U ] = {A ∈ A | A ∈ FA and A ∈ H}.
Then, by [9, Proposition 2.1] there are equivalences of categories inverse to
each other

C → GF[U ], C 7→ h(C) and GF[U ] → C, A 7→ a(A).

If the equivalent conditions of Proposition 1.13 are satisfied, then composing
these equivalence with those stated in (iii), it follows that GF[U ] and D are
equivalent as well.

As we have already mentioned in paragraph 1.3, it is clear that a particular
case in which TA is a TTF-class occurs if U is a projective object of A. In
this case H = Gen[U ], so h = TrU , and the category GF[U ] consists exactly
of those objects of A which are both U -generated and U -distinguished.

Before proving the main result of this section, we need the following tech-
nical lemma.

1.17. Lemma. If U is a CQF-3 object of A, then
a) TB = KerL;
b) If, in addition, the functor aL : B → C is exact, then KerLR(f) ∈ TA

for every morphism f in A with torsion kernel.

Proof. a) The inclusion KerL ⊆ TB is clear by the definition of TB. Con-
versely, if B ∈ TB, then L(B) ∈ TA, and RL(B) = 0. Hence LRL(B) = 0,
and also L(B) = 0, since L(σB) : L(B) → LRL(B) is a monomorphism.

b) Let f : A → A′′ be a morphism in A with A′ = Ker f belonging to TA.

Applying the left exact functor R to the exact sequence 0 → A′ → A
f−→ A′′,

and having in mind that R(A′) = 0, we obtain a monomorphism R(f) :
R(A) → R(A′′). Thus, our assumption about L assures that KerLR(f) is
torsion in A. ¤



EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 11

1.18. Theorem. If U is a CQF-3 object of A, and the functor aL : B → C
is exact then:
a) The following conditions are equivalent.

(i) Pres[U ] = Stat(R);
(ii) R(A) = Adst(R);

(iii) C Ri // D
aL

oo are equivalences inverse to each other.

b) If the conditions in a) hold, then the following conditions are also equiv-
alent.

(i) Pres[U ] is an abelian category;
(ii) R(A) = D;

(iii) C LR// Pres[U ]
a

oo are equivalences inverse to each other;

(iv) Pres[U ] is a Grothendieck category;
(v) RL ∼= jb;
(vi) The functor RL : B → B is left exact.
(vii) The functor LR : A → A is right exact.

Proof. a) (i)⇔(ii) is given in [4, Theorem 1.6].
(i)⇒(iii) is just Corollary 1.14.
(iii)⇒(i). To prove this, it is enough to show that R(Ker ρA) = 0 for all

A ∈ A (see [4, Theorem 1.6]). In our case, this is equivalent to Ker ρA ∈ TA.
Let then A ∈ A. We construct the commutative diagram with exact rows

and columns

0

²²

0

²²

0

²²
Ker f

²²

Ker ρA

²²

Ker ρia(A)

²²
0 // KerLR(νA) //

f

²²

LR(A)
LR(νA)//

ρA

²²

LRia(A)

ρia(A)

²²
0 // Ker νA

// A
νA // ia(A),

where f is induced by the definition of the kernel. The Ker-Coker lemma

gives an exact sequence 0 → Ker f
f ′−→ Ker ρA → Ker ρia(A). Consider the

diagram with exact rows

0 // Ker f
f ′ // Ker ρA

// Coker f ′

²²

// 0

0 // Ker f
f ′ // Ker ρA

// Ker ρia(A),
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where the induced morphism Coker f ′ → Ker ρia(A) is a monomorphism.
Now, Ker νA ∈ TA, so KerLR(νA) ∈ TA by Lemma 1.17. Consequently,
Ker f ∈ TA, as a subobject of KerLR(νA). On the other hand, ia(A) ∈ C
and, using (iii) and Proposition 1.13, we deduce that Ker ρia(A) ∈ TA. Hence
its subobject Coker f ′ belongs to TA too. Therefore Ker ρA ∈ TA, and (i)
follows.

b) (i)⇒(ii) Let A ∈ A. If B ∈ TB then, by Lemma 1.17, we have
HomB(B,R(A)) ∼= HomA(L(B), A) = HomA(0, A) = 0, so R(A) ∈ FB.

If g : R(A) → B is a morphism in B with torsion kernel and cokernel,
it is actually a monomorphism, since its kernel is 0, being both torsion and
torsion free. Denote B′′ = Coker g. The short exact sequence

0 → R(A)
g−→ B → B′′ → 0

induces an exact sequence

0 → KerL(g) → LR(A)
L(g)−→ L(B) → 0,

where we have used that L(B′′) = 0. Since KerL(g) ∈ TA, we have
LR(KerL(g)) = 0, hence L(g) is a monomorphism and an epimorphism
in Pres[U ]. But Pres[U ] is balanced, as it is abelian, so L(g) is an isomor-
phism in Pres[U ]. Since Pres[U ] is a full subcategory of A, it follows that
L(g) is an isomorphism in A too. Hence

R(ρA)R(L(g)−1)σBg = R(ρA)R(L(g)−1)R(L(g))σR(A)

= R(ρA)σR(A) = 1R(A),

and g is a section, which means R(A) is TB-closed. Therefore R(A) ⊆ D.
Now, let B ∈ D. Consider the exact sequence

0 → KerσB → B
σB−→ RL(B) → CokerσB → 0.

By Proposition 1.6, L(σB) is an isomorphism, hence L(CokerσB) = 0, and
CokerσB ∈ TB. On the other hand, the composite morphism

L(KerσB) → L(B)
L(σB)−→ LRL(B)

is zero, implying that L(KerσB) → L(B) is the zero morphism. Thus
L(KerσB) = Ker(L(KerσB) → L(B)) belongs to TA, and by the definition
of TB, KerσB ∈ TB. Since B is TB-closed, it follows that σB is a section,
in particular a monomorphism, so B is a direct summand of RL(B). Let
B′ be the complement of B in RL(B). Since the additive functors preserve
the exactness of the split short exact sequences, we obtain a commutative
diagram with exact rows

0 // B′ //

σB′
²²

RL(B) // B //

σB

²²

0

0 // RL(B′) // RLRL(B) // RL(B) // 0.
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Consequently, σB is an epimorphism. But we have seen that it is also a
monomorphism, hence B ∼= RL(B) ∈ R(A).

(ii)⇒(iii). We have the equivalences

Pres[U ]
R // R(A)
L

oo and D aL // C.
Ri

oo

Composing them, and having in mind that R(A) = D and LR(A) ∼= A for
all A ∈ Pres[U ], we obtain (iii).

(iii)⇒(iv) and (iv)⇒(i) are obvious.
(ii)⇒(v). If (ii) holds, then RL : B → B factors through the inclusion

j : D → B, and this factorization is isomorphic to b, as left adjoints of j.
(v)⇒(vi) is immediate, since b is exact and j is left exact.
(vi)⇒(ii). The argument is similar to (i)⇒(ii), with the following mod-

ification. If 0 → R(A)
g−→ B → B′′ → 0 is the above considered short

exact sequence with B′′ ∈ TB, then, applying the left exact functor RL,
and keeping in mind that Lemma 1.17 implies RL(B′′) = 0, we deduce that
RL(g) is an isomorphism.

(iii)⇒(vii). We have the (not necessarily commutative) diagram of cate-
gories and functors

A

LR{{ww
ww

ww
ww

w
a

ÂÂ?
??

??
??

Pres[U ]
a //

;;wwwwwwwww
C,

LR
oo

i

__???????

where the functors on the bottom row are equivalences, and Pres[U ] → A
being the inclusion functor. This diagram shows that the functor LR : A →
Pres[U ] has a right adjoint, namely ia. Therefore it is right exact, and by
the final observation of paragraph 1.7, LR : A → A is right exact too.

(vii)⇒(i) is the dual of [17, Chapter V, Proposition 5.3]. ¤

1.19. Corollary. If the functors R and aL are exact, and U (Λ) ∈ Stat(R)
for every set Λ, then R restricts to the following equivalences of categories

a) C −→ D with inverse D aL−→ C;
b) Pres[U ] −→ D with inverse D L−→ Pres[U ];
c) GF[U ] −→ D with inverse D −→ GF[U ], B 7→ L(B)/tA(L(B)).

Proof. It is easy to see that, with the hypoteses of this corollary, Pres[U ] =
Stat(R) and LR : A → A is right exact. Moreover, [4, Lemma 1.4] implies
Gen[U ] = {A ∈ A | ρA is an epimorphism}, so TrU (A) = Im ρA for all
A ∈ A, according to Lemma 1.5. Applying R to the exact sequence 0 →
Im ρA → A → A/ Im ρA → 0, and using the isomorphism R(Im ρA) ∼= R(A)
stated in Lemma 1.4, we infer A/TrU (A) ∈ KerR, for all A ∈ A. Since
KerR is a TTF-class, the same argument as in paragraph 1.3 shows that U
is a CQF-3 object of A. Therefore a) and b) follow by Theorem 1.18. On

the other hand, by paragraph 1.16, GF[U ]
a // C
h

oo , are equivalences inverse



14 CIPRIAN MODOI

to each other, where the meaning of the symbol h is the same as there.
Moreover, if A ∈ GF[U ] then it is torsion free, so νA is a monomorphism.
Applying R to the short exact sequence

0 → A
νA−→ ia(A) → Coker νA → 0,

and having in mind that R(Coker νA) = 0, we deduce R(A) ∼= Ria(A), so
the functor GF[U ] → D is the restriction of R. Since LR is right exact and
LR(tA(A)) = 0 for all A ∈ A, it follows that A ∼= LR(A) ∼= LR(A/tA(A))
for all A ∈ Pres[U ]. Moreover, composing the equivalences from a) and
b), it follows that Pres[U ] and GF[U ] are also equivalent via the functors
which map A 7→ ha(A), A ∈ Pres[U ] and F 7→ LR(F ), F ∈ GF[U ]. But,
for all A ∈ Pres[U ], A/tA(A) ∈ GF[U ], since A/tA(A) ∈ Gen[U ] ∩ FA and
Gen[U ] ⊆ H. Hence ha : Pres[U ] → GF[U ] is isomorphic to the functor
which carries A to A/tA(A). Consequently, the inverse of the restricton
R : GF[U ] → D has the form indicated in c). ¤

1.20. Proposition. If the functors R and aL are exact, U (Λ) ∈ Stat(R)
for every set Λ, and U is a subgenerator of A, then the following statements
are equivalent.

(i) GF[U ] ⊆ Pres[U ];
(ii) U is a generator of A;
(iii) Pres[U ] ⊆ GF[U ].
Moreover, if these conditions are satisfied, then the categories Pres[U ],

GF[U ], C, A are equal, and TA = {0}.
Proof. A slight modification of [8, Proposition 1.5] shows the equivalence of
the conditions (i), (ii) and (iii). Now, the last assertion is obvious.

¤

1.21. Remark. a) Proposition 1.20 may be applied for an arbitrary U ,
replacing A with σ[U ], where U is a subgenerator.

b) If R is an arbitrary ring with identity, A = Mod-R, R = HomR(U,−),
S = EndA(U), B = Mod-S and U is Σ-quasiprojective, then U (Λ) ∈ Stat(R)
for every set Λ [12, Theorem 2.1], so Corollary 1.19 gives the equivalences
stated in [7, Theorem 1.3] and [8, Theorem 1.3], while Lemma 1.10 gives
again the Gabriel topology on S. Clearly, by Proposition 1.20, A = C if and
only if U is a generator of A.

2. Modules over small preadditive categories

2.1. Right pointed adjoint pair. Let Y be a (skeletally) small preadditive
category. By a (right) module over Y (or simply Y-module) we understand
an additive contravariant functor Yop → Ab. The Y-modules together with
the natural transformations between them form a Grothendieck category, de-
noted here by Mod-Y, the limits and the colimits being computed pointwise.
Recall that an object A in a Grothendieck category A is called finitely gen-
erated (presented) if the functor HomA(A,−) commutes with direct unions
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(limits). It is well-known that the Yoneda functor Y → Mod-Y, Y 7→
HomY(−, Y ) is an embedding, hence the category Y may be identified with
a full subcategory of Mod-Y, consisting of finitely generated projective ob-
jects. Moreover these objects form a set of generators for Mod-Y, what
means that the category Mod-Y is locally finitely generated.

A functor f : Y → A, where A is an arbitrary Grothendieck category,
induces an unique (up a natural isomorphism) colimits preserving functor
L : Mod-Y → A, such that, with the above identification, L(Y ) = f(Y ). Let
S =

⊕
Y ∈Y Y and U = L(S). The functor L has a right adjoint, namely

R : A → Mod-Y, given by

R(A) = HomA(f(−), A).

We shall say that the adjoint pair (R,L) is induced by f . If we suppose in
addition that f(Y ) is a projective object of A for all Y ∈ Y, then R is an
exact functor, as it may be seen from its definition. Then U is projective,
hence TA = KerR = Ker HomA(U,−) by paragraph 1.3, where TA denotes
the (hereditary) torsion class associated with U , which assures that U is a
CQF-3 object.

We say that the adjoint pair (R,L) is right pointed if it is induced by
a fully-faithful functor f . If this is the case, then it may be easily seen
that RL(Y ) ∼= Y , for all Y ∈ Y. Conversely, if σY : Y → RL(Y ) is an
isomorphism for all Y ∈ Y, where σ denotes, as in paragraph 1.1, the unit
of the adjunction between R and L, then ρf(Y ) = ρL(Y ) is an isomorphism
too. Therefore the preadditive categories Y and f(Y) are equivalent, hence
f is fully-faithful. Note also that the definition of right pointed adjoint pair
given here agrees with the one imposed in [4, Section 2].

Assume now (R,L) is right pointed, and f(Y ) is projective in A for all
Y ∈ Y, and let Q be a injective cogenerator of (TA,FA), thus T ∈ TA if
and only if HomA(T,Q) = 0. By standard arguments, like in [20, Chapter
I, proof of Propositions 10.3 and 10.6], it may be verified that Ker(L(B′) →
L(B)) ∈ TA for every short exact sequence 0 → B′ → B → B′′ → 0
in B, if and only if R(Q) is injective relative to this exact sequence. Fix
now an object Y of Y. We may show first, as in [12, Lemma 1.1], that
σI : I → RL(I) is an isomorphism for all finitely generated subobjects I
of Y , further as in [8, proof of Theorem 1.3] that Ker(L(I) → L(Y )) ∈ TA
for all finitely generated subobjects I of Y . As Mod-Y is locally finitely
generated, it follows by [10, paragraph 1.4], that every subobject I of Y is
the direct union of its finitely generated subobjects. This implies (see again
[8, proof of Theorem 1.3]) that Ker(L(I) → L(Y )) ∈ TA, for all I ∈ LB(Y ).
Consequently, R(Q) is injective relative to any exact sequence of the form
0 → I → Y → Y/I → 0, with Y ∈ Y. Furthermore this is equivalent,
according to [13, Lemma 1], to the fact that R(Q) is an injective object of
Mod-Y. Finally, the interested fact for us is that Ker(L(B′) → L(B)) ∈ TA,
for all monomorphisms B′ → B in B. By paragraph 1.9 the class TB is a
hereditary torsion class of objects of B, and TB = KerL, as in Lemma 1.17.
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2.2. Gabriel topologies on Y. A Gabriel topology of B = Mod-Y, fol-
lowing [10, paragraph 2.1], is a family G =

⋃
Y ∈Y GY , where GY ⊆ LB(HY ),

Y ∈ Y satisfying the following axioms
T1) Y ∈ GY ;
T2) if I ∈ GY and g ∈ HomB(Y ′, Y ), then g−1(I) ∈ GY ′ ;
T3) if I1, I2 ∈ L(Y ) for Y ∈ Y, and I1 ∈ GY , such that g−1(I2) ∈ GY ′ for
any g ∈ HomB(Y ′, Y ) with Im g ≤ I1, and any Y ′ ∈ Y, then I2 ∈ GY .

Note that T1) can be replaced with an axiom which states that GY is a
filter on the lattice LB(HY ).

We know that the map

T 7→ G(T ) = {I ∈ LB(HY ) | Y ∈ Y, HY /I ∈ T }
establishes a bijection between the hereditary torsion classes and the Gabriel
topologies of B, with the inverse

G 7→ T (G) = {B ∈ B | Ker g ∈ G for all g ∈ HomB(HY , B) and all Y ∈ Y}.
Obviously, this Gabriel topology on Y offers a better determination of the

torsion theory (TB,FB) than the corresponding filter on the lattice LB(S)
given in 1.8. The following Theorem and Corollary are similar in the spirit,
not also in details, to [10, Theorem 4.7, Corollary 4.9 and Theorem 4.10].

2.3. Theorem. Let Y be a small preadditive category, B = Mod-Y, and
f : Y → A be a functor, where A is an arbitrary Grothendieck category. Let
(R,L) be adjoint pair induced by f , and S =

⊕
Y ∈Y Y , U = L(S). Keep the

notations of Section 1. If f(Y ) is a projective object of A for all Y ∈ Y,
and the adjoint pair (R,L) is right pointed, then af(Y) = {af(Y ) | Y ∈ Y}
is a set of projective generators for C, and the functor R restricts to the
following equivalences of categories.

a) C −→ D with the inverse D aL−→ C;
b) Pres[U ] −→ D with the inverse D L−→ Pres[U ];
c) GF[U ] −→ D with the inverse D −→ GF[U ], B 7→ L(B)/tA(L(B)).
Moreover, the Gabriel topology on Y associated with the torsion theory

(TB,FB) is given by GY = {I ∈ LB(Y ) | f(Y ) = If(Y )} for all Y ∈ Y,
where by If(Y ) we have denoted the image of the induced morphism L(I) →
L(Y ) = f(Y ).

Proof. We have seen in paragraph 2.1 that U is a CQF-3 object, and aL is
exact. Observe that TA = {T ∈ A | HomA(f(Y ), T ) = 0 for all Y ∈ Y}.
We know by [9, Proposition 1.2] that a(U) is an generator for C. Since a
commutes with direct sums, a(U) =

⊕
Y ∈Y af(Y ), hence {af(Y ) | Y ∈ Y} is

a set of generators for C. Then, by the generalized Popescu-Gabriel theorem
[10, Theorem 4.1], the functor

C → Mod-af(Y), C 7→ HomC(af(−), C)

is fully-faithful. In order to show af(Y ) is projective in C for all Y ∈ Y
observe that a short exact sequence 0 → C ′ → C → C ′′ → 0 in C is
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determined by an exact sequence

0 → C ′ → C → C ′′ → T → 0

in A, with C ′, C, C ′′ ∈ C and T ∈ TA. If we apply the exact functor
HomA(f(Y ),−) (Y ∈ Y), we use the first observation of this proof and
the adjunction between a and i, then the conclusion follows.

For an Y ∈ Y and an A ∈ A, the unit of the adjunction νA : A → ia(A)
has torsion kernel and cokernel, hence it induces an isomorphism

HomA(f(Y ), A) ∼= HomA(f(Y ), ia(A)) ∼= HomC(af(Y ),a(A)),

checking that the categories af(Y) and f(Y) are equivalent. Since the cate-
gories f(Y) and Y are equivalent too, so are Mod-af(Y) and Mod-Y. Then
we can easily observe, that the above fully-faithful functor is naturally equiv-
alent to Ri. Therefore to prove a) and b), we apply Proposition 1.6 and The-
orem 1.18. To prove c) works the same argument of the proof of Corollary
1.19.

Finally, as in Lemma 1.10, GY = {I ∈ LB(Y ) | f(Y )/If(Y ) ∈ TA}, for all
Y ∈ Y. Moreover, since f(Y )/If(Y ) is isomorphic to L(Y/I), it belongs to
TA if and only if it is equal to 0, or equivalently, f(Y ) = If(Y ). ¤

2.4. Corollary. Let X and Y be two small preadditive categories, let f :
Y → X be a functor, and A = Mod-X , B = Mod-Y. Let L : B → A be
the unique colimits preserving functor which extends f . If f is fully-faithful,
S =

⊕
Y ∈Y Y , and U = L(S), then the categories C, Pres[U ], GF[U ] and B

are equivalent, where the meaning of symbols C, Pres[U ] and GF[U ] is the
same as in Section 1.

Proof. Clearly, L has a right adjoint, namely

R : A → B, R(A) = HomA(Hf(−), A),

where HX = HomX (−, X) for all X ∈ X . Note that the Yoneda isomor-
phism implies R(A) ∼= Af , and R is a colimits preserving functor, because
Hf(Y ) is finitely generated projective in A. If f is fully-faithful, or equiva-
lently, the adjoint pair (R,L) is right pointed, we deduce, by Theorem 2.3,
that the categories C, Pres[U ], GF[U ] and R(A) = D are equivalent. More-
over, let B ∈ B be an object in B such that B ∈ TB = KerL. Then there is
a presentation of B

⊕

Y ′
HY ′ →

⊕

Y

HY → B → 0,

where Y ′ and Y are chosen among elements, possibly repeated, of Y. Ap-
plying the colimits preserving functor RL to this sequence, and having in
mind that RL(HY ) ∼= HY for all Y ∈ Y by Yoneda isomorphism, it follows
B ∼= RL(B) ∈ D, hence D = B. ¤

2.5. Generalized module category. Fix an arbitrary commutative ring
k. By a k-category we understand an additive category, whose Hom-sets
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are equipped with a k-module structure, such that the composition of mor-
phisms is linear in both variables. For example, the concepts of Z-category
and preadditive category coincide. Let X be a skeletally small k-category,
and denote by A = Mod-X . Clearly, A is a k-category too. Moreover, A is
a Grothendieck category, with X as set of finitely generated generators.

Note that A is equivalent to the category of additive contravariant func-
tors X op → Mod-k. Regarding the small preadditive categories as rings
with several objects, the situation is analogous to the case of an ordinary
k-algebra R, namely, every R-module becomes automatically a k-module.

In what remains of this paragraph, we consider a particular case, namely,
when X is the (skeletally small preadditive) category of finitely presented
R-modules mod-R, where R is a finite dimensional algebra over a field k.
Note that (mod-R)op ' mod-Rop, that is the opposite category of mod-R
is equivalent to the category of finitely presented left R-modules, via the
usual k-duality functor D : mod-R → mod-Rop, D(M) = Homk(M, k).
We put A = Mod-X , that is, A is the category of R-generalized modules.
Let M be a finitely presented R-module, and denote E = EndR(M) and
Y = {E}. Then B = Mod-Y = Mod-E is actually the category of the right
E-modules. The functor f : Y → X , f(E) = M is fully-faithful, so it induces
a right pointed adjoint pair (R,L), where L is the unique colimits preserving
functor sending E into HM = HomR(−,M) (or M after identification), and
R(A) = HomA(HM , A) ∼= Af for all A ∈ A. Consequently, Pres[HM ] is
equivalent to Mod-E by Corollary 2.4. This generalizes the equivalences
given in [18, Lemma 2.2 and Lemma 2.3]. Indeed, since an equivalence
preserves the finitely presented objects, mod-E, is carried into fp Pres[HM ].
On the other hand, since colimits in Pres[HM ] are computed exactly as in
A, A ∈ fp Pres[HM ] if and only if A belongs to Pres[HM ] and it is finitely
presented as object of A. Hence

fpPres[HM ] = {A ∈ A |there is an exact sequence

Hm
M → Hn

M → A → 0, with m,n ≥ 1}.
Now, as in [3, proof of Proposition 3.1], the functors belonging to fp Pres[HM ]
are images of a suitable morphism inA of the form Hn

M → DHomR(M,−)m,
where m,n ≥ 1 are integers. Moreover, for all X ∈ mod-R and all A ∈ fpA,
A(X) ∈ mod-k, so A can be regarded as a functor (mod-R)op → mod-k.
Therefore fpPres[HM ] are exactly the functors described in [18, Section 2].

2.6. The category of unital modules over a ring with local units.
Recall that a ring (without identity) R is said to be with enough idempotents
if there is a set X of pairwise orthogonal idempotents of R, such that

R =
⊕

e∈X
eR =

⊕

e∈X
Re =

⊕

e∈X
eRe.

A module M over such a ring is said to be unital if MR = M . With standard
arguments, it may be verified that Mod-R, the category of unital modules
over R is equivalent to the category of modules over the small preadditive
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category having as objects the set X , and as morphisms HomX (e′, e) ∼=
HomR(e′R, eR) ∼= eRe′, the composition of morphisms being induced by the
multiplication in R.

Note also that, conversely, if it is given a small preadditive category X ,
then there is a ring with enough idempotents R such that Mod-X is equiv-
alent to Mod-R. (see [6, Chapitre II, Proposition 2]).

An associative ring R is called ring with local units if it has a set E of
idempotents, such that every finite subset of R is contained in a subring of
the form eRe, where e ∈ E . As in the case of rings with enough idempotents,
a module M over a ring with local units is called unital if MR = M , and
Mod-R denotes the category of unital modules. For e, e′ ∈ E , we define the
relation e ≤ e′ if and only if ee′ = e′e = e, equivalently, eRe ⊆ e′Re′. This is
an ordering on E , such that (E ,≤) is directed, and R =

∑
e∈E eRe. Moreover,

the R-module M is unital if and only if it is of the form M =
∑

e∈E Me,
where Me is regarded an abelian subgroup of M . Note also that if R is ring
with enough idempotents X , then the set {e1 + . . . + en | e1, . . . , en ∈ X}
acts a a set of local unit for R. On the other hand, according to [2, p. 12,
Remark], the category of unital modules over an arbitrary ring with local
units is equivalent to the one of unital modules over a ring with enough
idempotents, hence it is a Grothendieck category.

Let R be a ring with local units. Following [2], we say that a unital
R-module M is locally projective if it is the direct limit of a system {Mλ |
λ ∈ Λ} of finitely generated, projective direct summands of M , such that
λ ≤ λ′ whenever the canonical projection M → Mλ factors through M →
Mλ′ . Alternatively, we may consider the composite morphisms M → Mλ →
M , where Mλ → M are the canonical injections. These morphisms are
denoted here by ελ ∈ EndR(M), and they form a set of idempotents of
EndR(M). Thus, the ring EndR(Mλ) is a subring of EndR(M), actually
EndR(Mλ) ∼= ελ EndR(M)ελ. As in [2, Section 2, p. 11], we construct
the ring E = ENDR(M) = lim−→ EndR(Mλ). Clearly, the set {ελ | λ ∈ Λ}
acts as a set of local units on the ring E. Moreover, E = EndR(M)E,
and there is a left E-module structure on M , defined by the restriction
of the scalars via the inclusion map E → EndR(M). Thus, for all A ∈
Mod-R, the abelian group HomR(M, A) becomes a E-module, and denote
by HOMR(M, A) = HomR(M, A)E, the largest unitary E-submodule of
HomR(M, A). Obviously,

HOMR(M, A) ∼= lim−→ HomR(M,A)ελ
∼= lim−→ HomR(Mλ, A).

In fact, HOMR(M, A) consists exactly of those morphisms which factor
through a submodule Mλ. Observe that we have just defined a functor

HOMR(M,−) : Mod-R → Mod-E.

Since the usual tensor product can be defined without the use the identity
of the ring, we obtain another functor −⊗E M : Mod-E → Mod-R. For all
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A ∈ Mod-R and all B ∈ Mod-E, we define the maps

ρA : HOMR(M,A)⊗E M → A, ρA(f ⊗m) = f(m);

σB : B → HOMR(M, B ⊗E M), σB(b) : m 7→ b⊗m.

It is routine to verify that ρA and σB are well defined R, respectively E-
morphisms, and they are the counit, respectively unit of the adjunction
between R = HOMR(M,−) and L = −⊗E M .

Since Mod-R and Mod-E are Grothendieck categories, E is a generator
for Mod-E, and M = E ⊗E M , the general settings of paragraph 1.1 are
fulfilled. Therefore, we may keep the notations used in Section 1, for the
categories A = Mod-R and B = Mod-E.

2.7. Proposition. If M = lim−→ Mλ is a locally projective module over a ring

with local units R, then the functor HOMR(M,−) restricts to the following
equivalences of categories

a) C −→ B with the inverse B a(−⊗EM)−→ C;
b) Pres[M ] −→ B with the inverse B −⊗EM−→ C;
c) GF[M ] −→ B with the inverse B −→ GF[M ], B 7→ B ⊗E M/tA(B ⊗E

M).

Proof. According to [2, p. 12, Remark], the category Mod-E is equivalent to
Mod- EndE(P ), where P =

⊕
λ∈Λ Mλ, and EndE(P ) is a ring with enough

idempotents. Therefore it is also equivalent to the category Mod-Y, where
Y is a preadditive category, with the set of objects Λ and HomY(λ′, λ) ∼=
ελEελ′ . We denote by T : Mod-Y → Mod-E this last equivalence. Then,
obviously, (T−1R,LT) is an adjoint pair, which is induced by f : Y →
Mod-R, f(λ) = Mλ. By hypothesis f(λ) is projective in Mod-R, for all λ ∈ Λ.
Moreover, we claim that HomR(Mλ′ , Mλ) ∼= ελEελ′ for all λ, λ′ ∈ Λ. Indeed,
this is obvious if we replace E with EndR(M). But for any epimorphism
f of M , we have ελfελ′ = ε2λfε2λ′ ∈ ελEελ′ , hence our claim holds. This,
together with the isomorphism L(Eλ) = Eλ ⊗E M ∼= Mλ shows that the
adjoint pair (T−1R,LT) is right pointed. Therefore Theorem 2.3 gives the
desired equivalences, but with D instead of B. The fact that D = B follows
by [4, Corollary 2.5]. ¤

The referee communicated us the following alternative proof of the fact
that B = C in Proposition 2.7, connecting it to the theory in [9]: By [15,
Proposition 3.2] and [11, Theorem 1.9] it follows that B is equivalent to the
quotient category of Mod-EndR(M) modulo the Gabriel filter of right ideals
containing E. The argument used in [8, Theorem 1.3] shows that E is the
smallest right ideal of EndR(M) satisfying EM = M . On the other hand,
this is equivalent to C, according to [9, Theorem 1.7]

2.8. Remark. a) Proposition 2.7 generalizes [2, Theorem 2.5], where the
module M is supposed, in addition, to be generator of the category Mod-R.
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If this is the case, by Proposition 1.20, we have immediately C = Pres[U ] =
GF[U ] = Mod-R.

b) Remark in [2, p. 12], which plays a crucial role in the proof of Propo-
sition 2.7, is a consequence of the result, generalized by us, stated in [2,
Theorem 2.5]. In a preliminary form of this paper, the proof of Proposi-
tion 2.7 did not make use of this Remark, and was deduced directly from
Corollary 1.19. We preferred this proof, because it is shorter, and, more
important, it gives an unitary character to the paper.

2.9. Group graded rings. Let G be a group, R =
⊕

γ∈G Rγ a G-graded
ring and fix a subgroup H of G, and denote by H\G the set of the right
cosets of H in G, and by [H\G] a set of representatives for these cosets.
A H\G-graded R-module is a R-module N which has a decomposition
N =

⊕
γ∈[H\G] NHγ as abelian group, such that NHγ1Rγ2 ⊆ NHγ1γ2 , for all

γ1 ∈ [H\G] and all γ2 ∈ G. We consider the category Gr-(H\G,R), whose
objects are H\G-graded R-modules, and morphisms are grade preserving
R-morphisms (see [16] for details). It is well known that this category is a
Grothendieck category.

Let M be a G-graded (right) R-module, and N ∈ Gr-(H\G,R). Then,
forgetting the grade, M becomes a H\G-graded R-module, putting MHγ =⊕

χ∈H Mχγ . Denote by

HOMH\G,R(M, N) = {f ∈ HomR(M,N) | f(MHγ) ⊆ NHγ for all γ ∈ [H\G]}.
Direct verification shows that ENDR(M, M) = HOM1\G,R(M, M) is a G-
graded ring, M is a G-graded left E, right R-bimodule, and the abelian
group HOMH\G,R(M, N) is actually a H\G-graded E-module, for all N ∈
Gr-(H\G,R), where E denotes the graded ring ENDR(M). We have defined
a functor HOMH\G,R(M,−) : Gr-(H\G,R) → Gr-(H\G,E), which has a
right adjoint, namely−⊗EM : Gr-(H\G,E) → Gr-(H\G,R) [16, paragraph
1.10].

Denote by Y the category whose objects are the cosets H\G, with mor-
phisms HomY(Hγ1,Hγ2) ∼= Eγ−1

2 Hγ1
, and the composition of the morphisms

is given by the multiplication in the ring E. In a straightforward manner,
we may show that the categories Gr-(H\G,E) and (Yop,Ab) are equivalent,
to a H\G-graded R-module N corresponding the functor N∗ : Yop → Ab,
given by

N∗(Hγ) = NHγ and N∗(α)(x) = xα, for all α ∈ Eγ−1
2 Hγ2

, x ∈ NHγ2 ,

and conversely, to such a functor N∗ : Yop → Ab corresponding the H\G-
graded R-module N =

⊕
γ∈[H\G] N

∗(Hγ). Note that equivalence between
the category of G-graded modules and a category of unital modules over a
ring with enough idempotents may be also found in [1, Corollary 2.9].

The functor −⊗E M is colimits preserving and extends the functor

f : Y → Gr-(H\G,R), f(Hγ) = M(γ−1),
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(this being regarded, as H\G-graded), where by M(γ) we have denoted the
γ-th suspension of M [16, paragraph 1.7]. Indeed, to the object Hγ0 ∈ Y
corresponds the functor HomY(−, Hγ0) : Yop → Ab, and by the above
isomorphism of categories, this is carried into

⊕
γ∈[H\G] Eγ−1

0 Hγ
∼= E(γ−1

0 ).
Note that S =

⊕
γ∈G E(g) is a generator for the category Gr-(H\G,R),

and U = S ⊗E M =
⊕

γ∈G M(γ). Assume that M is Σ-quasiprojective,
which is equivalent, by [16, paragraph 2.16], to the projectivity of M in
the full subcategory σ[U ] of Gr-(H\G, R) consisting of all H\G-graded R-
modules subgenerated by U . Thus Theorem 2.3, gives as a particular case
[16, Theorem 3.9].
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